# JS运行机制-Event Loop(事件循环)

# 一、为什么JavaScript是单线程?

单线程:同一个时间只能做一件事。为什么是单线程?

因为在 JS 运行的时候可能会阻止 UI 渲染,这说明了两个线程是互斥的。这其中的原因是因为 JS 可以修改 DOM,如果在 JS 执行的时候 UI 线程还在工作,就可能导致不能安全的渲染 UI。

为了利用多核CPU的计算能力,HTML5提出Web Worker标准,允许JavaScript脚本创建多个线程,但是子线程完全受主线程控制,且不得操作DOM。所以,这个新标准并没有改变JavaScript单线程的本质。

# 进程和线程

本质上来说,两个名词都是 CPU 工作时间片的一个描述。

进程描述了 CPU 在运行指令及加载和保存上下文所需的时间,放在应用上来说就代表了一个程序。线程是进程中的更小单位,描述了执行一段指令所需的时间。

当打开一个 Tab 页时,其实就是创建了一个进程,一个进程中可以有多个线程,比如渲染线程、JS 引擎线程、HTTP 请求线程等等。当你发起一个请求时,其实就是创建了一个线程,当请求结束后,该线程可能就会被销毁。

# 二、事件循环(Event Loop)

当我们打开网站时,网页的渲染过程就是一大堆同步任务,比如页面骨架和页面元素的渲染。而像加载图片音乐之类占用资源大耗时久的任务,就是异步任务。关于这部分有严格的文字定义,但本文的目的是用最小的学习成本彻底弄懂执行机制,所以我们用导图来说明:

image

导图要表达的内容用文字来表述的话:

  • 同步和异步任务分别进入不同的执行"场所",同步的进入主线程,异步的进入Event Table并注册回调函数。
  • 当指定的事情完成时,Event Table会将这个函数移入Event Queue。
  • 主线程内的任务执行完毕为空,会去Event Queue读取对应的函数,进入主线程执行。
  • 上述过程会不断重复,也就是常说的Event Loop(事件循环)。

主线程从”任务队列”中读取事件,这个过程是循环不断的,所以整个的这种运行机制又称为Event Loop(事件循环)。

我们不禁要问了,那怎么知道主线程执行栈为空啊?js引擎存在monitoring process进程,会持续不断的检查主线程执行栈是否为空,一旦为空,就会去Event Queue那里检查是否有等待被调用的函数

下面是一段简易的ajax请求代码:

let data = [];
$.ajax({
    url:www.javascript.com,
    data:data,
    success:() => {
        console.log('发送成功!');
    }
})
console.log('代码执行结束');
1
2
3
4
5
6
7
8
9

ajax进入Event Table,注册回调函数success。执行console.log('代码执行结束')。ajax事件完成,回调函数success进入Event Queue。主线程从Event Queue读取回调函数success并执行。

# 关于setTimeout

我们经常这么实现延时3秒执行:

setTimeout(() => {
    console.log('延时3秒');
},3000);
1
2
3

渐渐的setTimeout用的地方多了,问题也出现了,有时候明明写的延时3秒,实际却5,6秒才执行函数,这又咋回事啊?

我们修改一下前面的代码:

setTimeout(() => {
    task()
},3000)

sleep(10000000)
1
2
3
4
5

乍一看其实差不多嘛,但我们把这段代码在chrome执行一下,却发现控制台执行task()需要的时间远远超过3秒,说好的延时三秒,为啥现在需要这么长时间啊?

这时候我们需要重新理解setTimeout的定义。我们先说上述代码是怎么执行的:

  • task()进入Event Table并注册,计时开始。
  • 执行sleep函数,很慢,非常慢,计时仍在继续。
  • 3秒到了,计时事件timeout完成,task()进入Event Queue,但是sleep也太慢了吧,还没执行完,只好等着。
  • sleep终于执行完了,task()终于从Event Queue进入了主线程执行。

上述的流程走完,我们知道setTimeout这个函数,是经过指定时间后,把要执行的任务(本例中为task())加入到Event Queue中,又因为是单线程任务要一个一个执行,如果前面的任务需要的时间太久,那么只能等着,导致真正的延迟时间远远大于3秒。

setTimeout()只是将事件插入了”任务队列”,必须等到当前代码(执行栈)执行完,主线程才会去执行它指定的回调函数。要是当前代码耗时很长,有可能要等很久,所以并没有办法保证,回调函数一定会在setTimeout()指定的时间执行。

我们还经常遇到setTimeout(fn,0)这样的代码,0秒后执行又是什么意思呢?是不是可以立即执行呢? 答案是不会的,setTimeout(fn,0)的含义是,指定某个任务在主线程最早可得的空闲时间执行,意思就是不用再等多少秒了,只要主线程执行栈内的同步任务全部执行完成,栈为空就马上执行。

关于setTimeout要补充的是,即便主线程为空,0毫秒实际上也是达不到的。根据HTML的标准,最低是4毫秒。

# 关于setInterval

上面说完了setTimeout,当然不能错过它的孪生兄弟setInterval。他俩差不多,只不过后者是循环的执行。对于执行顺序来说,setInterval会每隔指定的时间将注册的函数置入Event Queue,如果前面的任务耗时太久,那么同样需要等待。 唯一需要注意的一点是,对于setInterval(fn,ms)来说,我们已经知道不是每过ms秒会执行一次fn,而是每过ms秒,会有fn进入Event Queue。一旦setInterval的回调函数fn执行时间超过了延迟时间ms,那么就完全看不出来有时间间隔了。

# 宏任务和微任务

除了广义的同步任务和异步任务,我们对任务有更精细的定义:

  • macro-task(宏任务):包括 script (主代码块)、setTimeout 、setInterval 、setImmediate 、I/O 、UI rendering

  • micro-task(微任务):Promise.then(非new Promise),process.nextTick(node中)、Object.observe 、MutationObserver

在ES6中,microtask称为 jobs,macrotask称为 task。

不同类型的任务会进入对应的Event Queue,比如setTimeout和setInterval会进入相同的Event Queue。

事件循环的顺序,决定js代码的执行顺序。进入整体代 码(宏任务)后,开始第一次循环。接着执行所有的微任务。然后再次从宏任务开始,找到其中一个任务队列执行完毕,再执行所有的微任务。

听起来有点绕,我们用文章最开始的一段代码说明:

setTimeout(function() {
    console.log('setTimeout');
})

new Promise(function(resolve) {
    console.log('promise');
}).then(function() {
    console.log('then');
})

console.log('console');
1
2
3
4
5
6
7
8
9
10
11
  • 这段script代码作为宏任务,进入主线程。
  • 先遇到setTimeout,那么将其回调函数注册后分发到宏任务Event Queue。
  • 接下来遇到了Promise,new Promise立即执行,输出'promise',then函数分发到微任务Event Queue。
  • 遇到console.log(),立即执行,输出'console'。
  • 整体代码script作为第一个宏任务执行结束,看看有哪些微任务?我们发现了then在微任务Event Queue里面,但是由于new Promise的时候没有执行resolve方法,所以不会输出'then'。
  • ok,第一轮事件循环结束了,我们开始第二轮循环,当然要从宏任务Event Queue开始。我们发现了宏任务Event Queue中setTimeout对应的回调函数,立即执行,输出'setTimeout'。
  • 结束。

事件循环,宏任务,微任务的关系如图所示:

image

我们来分析一段较复杂的代码,看看你是否真的掌握了js的执行机制:

console.log('1');

setTimeout(function() {
    console.log('2');
    process.nextTick(function() {
        console.log('3');
    })
    new Promise(function(resolve) {
        console.log('4');
        resolve();
    }).then(function() {
        console.log('5')
    })
})
process.nextTick(function() {
    console.log('6');
})
new Promise(function(resolve) {
    console.log('7');
    resolve();
}).then(function() {
    console.log('8')
})

setTimeout(function() {
    console.log('9');
    process.nextTick(function() {
        console.log('10');
    })
    new Promise(function(resolve) {
        console.log('11');
        resolve();
    }).then(function() {
        console.log('12')
    })
})
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

第一轮事件循环流程分析如下:

  • 整体script作为第一个宏任务进入主线程,遇到console.log,输出1。
  • 遇到setTimeout,其回调函数被分发到宏任务Event Queue中。我们暂且记为setTimeout1。
  • 遇到process.nextTick(),其回调函数被分发到微任务Event Queue中。我们记为process1。
  • 遇到Promise,new Promise直接执行,输出7。then被分发到微任务Event Queue中。我们记为then1。
  • 又遇到了setTimeout,其回调函数被分发到宏任务Event Queue中,我们记为setTimeout2。
宏任务Event Queue 微任务Event Queue
setTimeout1 process1
setTimeout2 then1
  • 上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。

  • 我们发现了process1和then1两个微任务。

  • 执行process1,输出6。

  • 执行then1,输出8。

好了,第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。

那么第二轮时间循环从setTimeout1宏任务开始:

  • 首先输出2。接下来遇到了process.nextTick(),同样将其分发到微任务Event Queue中,记为process2。new Promise立即执行输出4,then也分发到微任务Event Queue中,记为then2。
宏任务Event Queue 微任务Event Queue
setTimeout2 process2
then2
  • 第二轮事件循环宏任务结束,我们发现有process2和then2两个微任务可以执行。
  • 输出3。
  • 输出5。
  • 第二轮事件循环结束,第二轮输出2,4,3,5。

第三轮事件循环开始,此时只剩setTimeout2了,执行。

  • 直接输出9。
  • 将process.nextTick()分发到微任务Event Queue中。记为process3。
  • 直接执行new Promise,输出11。
  • 将then分发到微任务Event Queue中,记为then3。
宏任务Event Queue 微任务Event Queue
process3
then3
  • 第三轮事件循环宏任务执行结束,执行两个微任务process3和then3。
  • 输出10。
  • 输出12。
  • 第三轮事件循环结束,第三轮输出9,11,10,12。

整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。 (请注意,node环境下的事件监听依赖libuv与前端环境不完全相同,输出顺序可能会有误差)

# 关于async和await

console.log('script start')

async function async1() {
  await async2()
  console.log('async1 end')
}
async function async2() {
  console.log('async2 end')
}
async1()

setTimeout(function() {
  console.log('setTimeout')
}, 0)

new Promise(resolve => {
  console.log('Promise')
  resolve()
})
  .then(function() {
    console.log('promise1')
  })
  .then(function() {
    console.log('promise2')
  })
  console.log('script end')
// script start => async2 end => Promise => script end => promise1 => promise2 => async1 end => setTimeout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

首先先来解释下上述代码的 async 和 await 的执行顺序。当我们调用 async1 函数时,会马上输出 async2 end,并且函数返回一个 Promise,接下来在遇到await的时候会就让出线程开始执行 async1 外的代码,所以我们完全可以把await看成是让出线程的标志。

然后当同步代码全部执行完毕以后,就会去执行所有的异步代码,那么又会回到 await 的位置执行返回的 Promise 的 resolve 函数,这又会把 resolve 丢到微任务队列中,接下来去执行 then 中的回调,当两个 then 中的回调全部执行完毕以后,又会回到 await 的位置处理返回值,这时候你可以看成是 Promise.resolve(返回值).then(),然后 await 后的代码全部被包裹进了 then 的回调中,所以 console.log('async1 end')会优先执行于 setTimeout。

如果你觉得上面这段解释还是有点绕,那么我把 async 的这两个函数改造成你一定能理解的代码

new Promise((resolve, reject) => {
  console.log('async2 end')
  // Promise.resolve() 将代码插入微任务队列尾部
  // resolve 再次插入微任务队列尾部
  resolve(Promise.resolve())
}).then(() => {
  console.log('async1 end')
})
1
2
3
4
5
6
7
8

也就是说,如果 await 后面跟着 Promise 的话,async1 end 需要等待三个 tick 才能执行到。那么其实这个性能相对来说还是略慢的,所以 V8 团队借鉴了 Node 8 中的一个 Bug,在引擎底层将三次 tick 减少到了二次 tick。但是这种做法其实是违法了规范的,当然规范也是可以更改的,这是 V8 团队的一个 PR,目前已被同意这种做法。

# 浏览器相关线程

浏览器(多进程)包含了Browser进程(浏览器的主进程)、第三方插件进程和GPU进程(浏览器渲染进程),其中GPU进程(多线程)和Web前端密切相关,包含以下线程:

  • GUI渲染线程
  • JS引擎线程
  • 事件触发线程(和EventLoop密切相关)
  • 定时触发器线程
  • 异步HTTP请求线程

GUI渲染线程和JS引擎线程是互斥的,为了防止DOM渲染的不一致性,其中一个线程执行时另一个线程会被挂起。

这些线程中,和Vue的nextTick息息相关的是JS引擎线程事件触发线程

浏览器页面初次渲染完毕后,JS引擎线程结合事件触发线程的工作流程如下:

(1)同步任务在JS引擎线程(主线程)上执行,形成执行栈(Execution Context Stack)。

(2)主线程之外,事件触发线程管理着一个任务队列(Task Queue)。只要异步任务有了运行结果,就在任务队列之中放置一个事件。

(3)执行栈中的同步任务执行完毕,系统就会读取任务队列,如果有异步任务需要执行,将其加到主线程的执行栈并执行相应的异步任务。

主线程的执行流程如下图所示:

image

# 事件循环机制

事件触发线程管理的任务队列是如何产生的呢?事实上这些任务就是从JS引擎线程本身产生的,主线程在运行时会产生执行栈,栈中的代码调用某些异步API时会在任务队列中添加事件,栈中的代码执行完毕后,就会读取任务队列中的事件,去执行事件对应的回调函数,如此循环往复,形成事件循环机制,如下图所示:

image

宏任务和微任务的区别:

  • 宏任务是每次执行栈执行的代码(包括每次从事件队列中获取一个事件回调并放到执行栈中执行)
  • 浏览器为了能够使得JS引擎线程与GUI渲染线程有序切换,会在当前宏任务结束之后,下一个宏任务执行开始之前,对页面进行重新渲染(宏任务 > 渲染 > 宏任务 > ...)
  • 微任务是在当前宏任务执行结束之后立即执行的任务(在当前 宏任务执行之后,UI渲染之前执行的任务)。微任务的响应速度相比setTimeout(下一个宏任务)会更快,因为无需等待UI渲染。
  • 当前宏任务执行后,会将在它执行期间产生的所有微任务都执行一遍。

根据事件循环机制,重新梳理一下流程:

  • 执行一个宏任务(首次执行的主代码块或者任务队列中的回调函数)
  • 执行过程中如果遇到微任务,就将它添加到微任务的任务队列中
  • 宏任务执行完毕后,立即执行当前微任务队列中的所有任务(依次执行)
  • JS引擎线程挂起,GUI线程执行渲染
  • GUI线程渲染完毕后挂起,JS引擎线程执行任务队列中的下一个宏任务

参考

# 三、Node端事件循环

Node的事件循环依靠libuv引擎。当Node.js 启动, 就会初始化一个 event loop, 处理脚本时, 可能会发生异步API行为调用, 使用定时器任务或者nexTick, 处理完成后进入事件循环处理过程。这里展示了在node的事件循环的6个阶段。

images

每一个阶段都有一个FIFO的callbacks队列, 每个阶段都有自己的事件处理方式。当事件循环进入某个阶段时, 将会在该阶段内执行回调,直到队列耗尽或者回调的最大数量已执行, 那么将进入下一个处理阶段。

  • timers 阶段: 这个阶段执行setTimeout(callback) 和 setInterval(callback)预定的callback;
  • I/O callbacks 阶段: 执行除了close事件的callbacks、被timers(定时器,setTimeout、setInterval等)设定的callbacks、setImmediate()设定的callbacks之外的callbacks; (目前这个阶段)
  • idle, prepare 阶段: 仅node内部使用;
  • poll 阶段: 获取新的I/O事件, 适当的条件下node将阻塞在这里;
  • check 阶段: 执行setImmediate() 设定的callbacks;
  • close callbacks 阶段: 比如socket.on(‘close’, callback)的callback会在这个阶段执行.

参考

Last Updated: 7/20/2020, 3:51:57 PM